Thermo‐mechanical property enhancement of rigid polyurethane foam using silica and alumina as hybrid fillers over single filler

Author:

Polimera Srihith1ORCID,Gali A.1ORCID,Nath Susanta Kumar2ORCID,Rahaman Ariful3ORCID,Chandan Mohammed Rehaan4ORCID,Balakumaran S. J.4

Affiliation:

1. Department of Metallurgical and Materials Engineering National Institute of Technology Jamshedpur Jharkhand India

2. MER Division CSIR–National Metallurgical Laboratory Jamshedpur Jharkhand India

3. Department of Manufacturing Engineering School of Mechanical Engineering, Vellore Institute of Technology Vellore Tamilnadu India

4. Colloids and Polymers Research Group School of Chemical Engineering, Vellore Institute of Technology Vellore Tamilnadu India

Abstract

AbstractSilica and alumina particles were loaded in the rigid polyurethane foam composite as hybrid fillers. After the successful addition of silica and alumina as fillers, various properties of the foam composite were enhanced up to a particular weight percentage (7.5 wt% of silica and alumina each) with respect to alumina loaded foams. Hard urea domains are well distributed in the urethane matrix which indicates the absence of the peak representing H‐bonded urea in the Fourier‐transform infrared spectroscopy results. The addition of hybrid fillers into the rigid polyurethane foam matrix improved the compressive strength of the foam composite by 14% in comparison to alumina loaded foams due to the synergistic effect of the hybrid fillers. The foam composite at 7.5 wt% loading of hybrid fillers was successful in decreasing the thermal conductivity by 9% with respect to the thermal conductivity of the unloaded foam. There was a reduction in the gross calorific value up to 7% in the hybrid filler loaded foam composite when compared with that of the alumina loaded composite. Hence, hybrid fillers should be added to enhance the composite's properties by a greater extent.Highlights From the compressive test results, an increase in the compressive strength up to 14% was observed in the samples loaded with hybrid fillers with respect to the samples loaded with alumina due to the synergistic effects of the two fillers. For the foam composite loaded with alumina, the gross calorific value decreased up to 6% when compared to the unloaded foam. The gross calorific value decreased by a further 7% when hybrid fillers were added to the polyurethane foam composite with respect to the alumina loaded foam composite. The foam composite loaded with 7.5 weight % of hybrid fillers had lower values of thermal conductivity when compared with that of the unloaded polyurethane foam. We propose the addition of both alumina and silica as hybrid filler particles as they enhanced the various properties of the polyurethane foam composite to a greater extent than the addition of alumina particles as a single filler and have potential to replace unloaded polyurethane foams in different applications.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3