Process modeling guides operational variables that affect CO2 utilization during the accelerated carbonation of concrete

Author:

Prentice Dale P.12ORCID,AlShareedah Othman12,Sarkar Manas12,Arabit Jenny12,Mehdipour Iman3,Afzal Shaik4,Luo Junwei5,Abdullah Fahim5,Yun Sungil5,Christofides Panagiotis D.5ORCID,Simonetti Dante25ORCID,Sant Gaurav1267

Affiliation:

1. Laboratory for the Chemistry of Construction Materials (LC2), Department of Civil and Environmental Engineering University of California Los Angeles California USA

2. Institute for Carbon Management (ICM) University of California Los Angeles California USA

3. CarbonBuilt Inc. Los Angeles California USA

4. GTI Energy Des Plaines Illinois USA

5. Department of Chemical and Biomolecular Engineering University of California Los Angeles California USA

6. Department of Materials Science and Engineering University of California Los Angeles California USA

7. California Nanosystems Institute (CNSI) University of California Los Angeles California USA

Abstract

AbstractAccelerated concrete carbonation is an expanding option for decarbonizing construction. Factors such as concrete mixture design and carbonation environment can influence the maximum CO2 utilization that can be achieved during such a process. A carbonation process designed to utilize a water‐saturated dilute CO2 source wherein 2 < CO2 concentration (v/v%) < 16, was modeled in AspenPlus©. A regression model was developed to correlate CO2 uptake, relative humidity (11%–100%), CO2 concentration ([CO2] = 2—16 v/v%), and temperature (T = 11–74°C) conditions within a carbonation reactor. It was determined that [CO2] was the most significant variable as higher concentrations enhanced CO2 transport through the concrete. The energy use intensity per mass of CO2 utilized (kWh/kgCO2) was determined across a range of processing conditions. As a function of the operational conditions, accelerated carbonation provides a net CO2 reduction of up to 28 kgCO2/tonne of concrete; a reduction of up to ~45% compared to typical formulations.

Funder

National Energy Technology Laboratory

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3