Nonintegrating Knockdown and Customized Scaffold Design Enhances Human Adipose-Derived Stem Cells in Skeletal Repair

Author:

Levi Benjamin1,Hyun Jeong S.1,Nelson Emily R.1,Li Shuli1,Montoro Daniel T.1,Wan Derrick C.1,Jia Fang Jun2,Glotzbach Jason C.1,James Aaron W.1,Lee Min3,Huang Mei2,Quarto Natalina14,Gurtner Geoffrey C.15,Wu Joseph C.25,Longaker Michael T.15

Affiliation:

1. Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive Surgery DivisionStanford University School of Medicine, Stanford, California, USA

2. Department of Medicine and Radiology, Stanford University School of Medicine, Stanford, California, USA

3. Division of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, University of California Los Angeles School of Dentistry, Los Angeles, California, USA

4. Dipartimento di Scienze Chirurgiche, Anestesiologiche-Rianimatorie e dell'mergenza “Giuseppe Zannini,” Universita' degli Studi di Napoli Federico II, Napoli, Italy

5. for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA

Abstract

Abstract An urgent need exists in clinical medicine for suitable alternatives to available techniques for bone tissue repair. Human adipose-derived stem cells (hASCs) represent a readily available, autogenous cell source with well-documented in vivo osteogenic potential. In this article, we manipulated Noggin expression levels in hASCs using lentiviral and nonintegrating minicircle short hairpin ribonucleic acid (shRNA) methodologies in vitro and in vivo to enhance hASC osteogenesis. Human ASCs with Noggin knockdown showed significantly increased bone morphogenetic protein (BMP) signaling and osteogenic differentiation both in vitro and in vivo, and when placed onto a BMP-releasing scaffold embedded with lentiviral Noggin shRNA particles, hASCs more rapidly healed mouse calvarial defects. This study therefore suggests that genetic targeting of hASCs combined with custom scaffold design can optimize hASCs for skeletal regenerative medicine.

Funder

National Institutes of Health

National Institute of Dental and Craniofacial Research

Oak Foundation and Hagey Laboratory for Pediatric Regenerative Medicine

National Institute of Arthritis, and Musculoskeletal and Skin Diseases

Nog/Cre transgenic mice were a kind gift of Lisa Brunet and the Richard Harland Laboratory at the University of California at Berkeley

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3