Experimental study on the flow characteristics of supercritical CO2 in reservoir sandstones from the Ordos Basin, China

Author:

Zhu Qianlin1ORCID,Chen Dongbao12,Lu Shijian1,Jiang Shaojin3

Affiliation:

1. Jiangsu Key Laboratory of Coal‐Based Greenhouse Gas Control and Utilization Xuzhou PR China

2. School of Resources and Geosciences China University of Mining and Technology Xuzhou PR China

3. Research Institute of Shaanxi Yanchang Petroleum (Group) Co., Ltd Xi'an PR China

Abstract

AbstractUnderstanding the flow characteristics of supercritical CO2 in dry sandstones or those with low water content provides crucial information on the flow behavior in near‐wellbore zone. We conducted supercritical CO2 core flooding experiments using sandstone cores extracted from potential CO2 reservoirs in the Ordos Basin, China. During the experiments, we reduced the water content of saturated cores by flushing with dry CO2 and subsequently vacuumizing them at a temperature of 35°C to simulate sandstones with low water content. The experimental results demonstrate that the CO2 permeability was initially high during the low differential pressure stage and remained constant as the differential pressure increased. In the carbonic acid solution injection experiment, we observed an increase in the flow rate of the solution with the continuous interaction in the cores from the Shanxi and Shihezi groups, while the Yanchang group exhibited the opposite effect. This increase in permeability can be attributed to mineral dissolution and the loss of fine particles. Conversely, the blockage of fine particles or the precipitation of dissolved minerals may lead to a decrease in permeability. After the CO2–water–rock interaction, the CO2 permeability decreased compared to before the interaction, indicating that adsorbed water, the precipitation of dissolved mineral, or pore throat blockage by fine particles could induce this permeability decrease. The impact of adsorbed water on the decrease in CO2 permeability is significant. Additionally, the CO2–water–rock interaction caused corrosion on the anorthite surface. Furthermore, calcite dispersed in connected pores displayed a more pronounced dissolution compared to cemented calcite. © 2023 Society of Chemical Industry and John Wiley & Sons, Ltd.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3