Landslide Susceptibility mapping using random forest and extreme gradient boosting: A case study of Fengjie, Chongqing

Author:

Zhang Wengang123,He Yuwei1,Wang Luqi123,Liu Songlin1,Meng Xuanyu1

Affiliation:

1. School of Civil Engineering Chongqing University Chongqing China

2. Key Laboratory of New Technology for Construction of Cities in Mountain Area Chongqing University, Ministry of Education Chongqing China

3. National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas Chongqing University Chongqing China

Abstract

Landslide susceptibility analysis can provide theoretical support for landslide risk management. However, some susceptibility analyses are not sufficiently interpretable. Moreover, the accuracy of many research methods needs to be improved. Therefore, this study can supplement these deficiencies. This study aims to research the evaluation effects of random forest (RF) and extreme gradient boosting (XGBoost) classifier models on landslide susceptibility, and to compare their applicability in Fengjie County, Chongqing, a typical landslide‐prone area in southwest of China. Firstly, 1624 landslides information from 1980 to 2020 were obtained through field investigation, and a geospatial database of 16 conditional factors had been constructed. Secondly, non‐landslide points were selected to form a complete data set and RF and XGBoost models were established. Finally, the area under the ROC curve (AUC) value, accuracy, and F‐score were used to compare the two models. The results show that even though both classifiers have a highly accurate evaluation of landslide susceptibility, the RF model performs better. In comparison, the RF model has a higher AUC value of 0.866, and its accuracy and F‐score are approximately 2% higher than XGBoost. The land use, elevation, and lithology of Fengjie County contribute to the occurrence of landslides. This is due to human engineering activities (such as land reclamation, and housing construction) resulting in low slope stability and landslides in widely distributed sandstone, siltstone, and mudstone layers owing to their low permeability and planes of weakness.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3