Synergetic effect of the crosslinker size and polysaccharide type on the acrylamide networks

Author:

Keten Selinay1,Gönülkirmaz Ferda1,Karacan Pinar1,Ceylan Deniz2ORCID,Abdurrahmanoğlu Suzan1ORCID

Affiliation:

1. Department of Chemistry Marmara University Istanbul Türkiye

2. Department of Pharmacy Bezmialem Vakif University Istanbul Türkiye

Abstract

AbstractThe microstructures of hydrogels dominate their properties such as swelling, mechanical, etc., and therefore, their applications. Possessing a homogeneous network lead to uniform swelling and mechanical properties throughout the material. Considering the synergistic effect of crosslinker size and polysaccharide variation, acrylamide hydrogels were synthesized in a single step reaction using tetraethyleneglycol dimethylacrylate (TEGDMA) as a crosslinker in the absence and presence of polysaccharides such as dextran, starch, and sodium alginate. By using the thermal initiator polysaccharides have been used directly without any pre‐functionalization in the single step gelation reaction. All the hydrogel samples were characterized by means of swelling, and mechanical and structural properties. Hydrogels synthesized with TEGDMA as a crosslinker were compared with conventional acrylamide gels prepared using N,N′‐methylenebis(acrylamide) (MBA) and the results emphasized the superior mechanical strength and flexibility of the gels obtained with TEGDMA. Both relatively longer crosslinker and polysaccharide additions have assisted in the formation of a more homogeneous acrylamide network. Polysaccharides which possess plenty of hydroxyl groups have provided a great impact on the swelling properties of the gel samples. Besides the carboxyl groups of alginate backbones have also increased the swelling ratio of the hydrogels additionally. The synergetic effect of the crosslinker and polysaccharide additives on the homogeneity of the acrylamide network and its swelling properties could be suggested for future applications, especially in the area of biomaterials.

Funder

Türkiye Bilimler Akademisi

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3