Use of artificial intelligence algorithms to predict systemic diseases from retinal images

Author:

Khan Rehana1,Surya Janani2,Roy Maitreyee1,Swathi Priya M. N.2,Mohan Sashwanthi2,Raman Sundaresan3,Raman Akshay4,Vyas Abhishek3,Raman Rajiv2ORCID

Affiliation:

1. School of Optometry and Vision Science University of New South Wales Sydney Australia

2. Shri Bhagwan Mahavir Vitreoretinal Services Sankara Nethralaya Chennai India

3. Department of Computer Science and Information Systems Birla Institute of Technology & Science Pilani India

4. Department of Computer Science and Engineering Vellore Institute of Technology Vellore India

Abstract

AbstractThe rise of non‐invasive, rapid, and widely accessible quantitative high‐resolution imaging methods, such as modern retinal photography and optical coherence tomography (OCT), has significantly impacted ophthalmology. These techniques offer remarkable accuracy and resolution in assessing ocular diseases and are increasingly recognized for their potential in identifying ocular biomarkers of systemic diseases. The application of artificial intelligence (AI) has been demonstrated to have promising results in identifying age, gender, systolic blood pressure, smoking status, and assessing cardiovascular disorders from the fundus and OCT images. Although our understanding of eye–body relationships has advanced from decades of conventional statistical modeling in large population‐based studies incorporating ophthalmic assessments, the application of AI to this field is still in its early stages. In this review article, we concentrate on the areas where AI‐based investigations could expand on existing conventional analyses to produce fresh findings using retinal biomarkers of systemic diseases. Five databases—Medline, Scopus, PubMed, Google Scholar, and Web of Science were searched using terms related to ocular imaging, systemic diseases, and artificial intelligence characteristics. Our review found that AI has been employed in a wide range of clinical tests and research applications, primarily for disease prediction, finding biomarkers and risk factor identification. We envisage artificial intelligence‐based models to have significant clinical and research impacts in the future through screening for high‐risk individuals, particularly in less developed areas, and identifying new retinal biomarkers, even though technical and socioeconomic challenges remain. Further research is needed to validate these models in real‐world setting.This article is categorized under: Application Areas > Health Care Technologies > Machine Learning Technologies > Prediction

Publisher

Wiley

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3