Adsorption of hydrocarbon pollutants from wastewater using Cu‐ and Zn‐loaded activated carbon derived from waste tires

Author:

Ahmad Waqas1,Muhammad Taj1ORCID,Ahmad Imtiaz1,Khan Mumtaz1,Nazneen Shahla2

Affiliation:

1. Institute of Chemical Sciences University of Peshawar Peshawar Pakistan

2. Department of Environmental Sciences University of Peshawar Peshawar Pakistan

Abstract

AbstractPetroleum refinery effluents contain hazardous aromatic and polyaromatic hydrocarbons that causes environmental degradation, that is, water, land, and air pollution; therefore, it should be properly treated before its discharge into environment. Adsorption serves an efficient route to treatment of refinery wastewater; but the high production cost and selectivity of the modern adsorbent used limits their industrial scale application. On the other hand, activated carbon due to desirable adsorption characteristics and low cost seems to hold the promise if properly modified to improve its efficiency. In this study, Cu and Zn impregnated on activated carbon (AC) derived from waste tires was used for adsorption of hydrocarbon pollutants from wastewater. AC was prepared from scrap tires through thermal pyrolysis, followed by chemical activation with KOH. Cu and Zn were loaded on AC through wet impregnation method. Initial batch mode adsorption experiments were carried out using aniline and phenol as model hydrocarbons, which indicated that maximum adsorption of aniline and phenol over Zn/AC and Cu/AC occurs in 10 min contact time, temperature 30°C, pH 6, 100 ppm initial concentration, and adsorbent dose of 0.1 g/10 mL. The removal of hydrocarbon pollutants from real refinery wastewater was also investigated under optimized conditions. Results show that the COD of the refinery wastewater decreased from 963 to 73 mg/L in case of Cu/AC (92% removal) and 78 mg/L in case of Zn/AC (91% removal), respectively. The adsorbent showed many folds reusability, and in first cycle, the removal efficiency of phenol and aniline was observed to be above 95%, whereas in second, third and fourth cycles, the removal percentage was 85%, 80%, and 70%, respectively.

Publisher

Wiley

Subject

General Environmental Science,Waste Management and Disposal,Water Science and Technology,General Chemical Engineering,Renewable Energy, Sustainability and the Environment,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3