Affiliation:
1. Department of Internal Medicine Soon Chun Hyang University, Seoul, Korea
2. Hyonam Kidney Laboratory Soon Chun Hyang University, Seoul, Korea
3. Ewha Womans University, Division of Pharmaceutical and Life Sciences, Seoul, Korea
Abstract
Abstract
We reported a functional incompetence in mesenchymal stem cells (MSCs) under uremia, but the mechanisms have not been explored. To study the mechanisms of dysfunctional MSCs induced by uremia, we characterized insulin signaling in MSCs and investigated the effect of uremic toxin, p-cresol, on the proangiogenic actions of insulin. In MSCs, insulin induced hypoxia-inducible factor (HIF)−1α, vascular endothelial growth factor, and stromal cell-derived factor 1α expressions via PI3K/Akt-dependent pathway. MSCs treated with p-cresol exhibited altered insulin signaling in a selective manner for insulin receptor substrate-1/PI3K/Akt pathway, whereas ERK pathway remained active. The insulin-induced increase of HIF-1α was blunted by p-cresol treatment. This Akt-selective insulin resistance was also observed in MSCs isolated from chronic kidney disease (CKD) mice. In mice model of hindlimb ischemia, blood flow recovery, capillary density, and local production of angiogenic factors in the ischemic limb treated with CKD MSCs were significantly inferior to those promoted by control MSCs. However, modifying CKD MSCs by overexpression of HIF-1α restored all of these changes. Taken together, these data suggest that p-cresol contributes to insulin resistance in a selective manner for Akt pathway. This might be a biological explanation for the functional incompetence of MSCs under uremia through defects in the insulin-induced elevation of HIF-1α protein expression. Stem Cells 2014;32:2443–2453
Funder
National Research Foundation of Korea Grant funded by the Korean Government
H.N.
Soon Chun Hyang University Research Fund (H.N.).
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Developmental Biology,Molecular Medicine
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献