NSUN2‐mediated m5C RNA methylation dictates retinoblastoma progression through promoting PFAS mRNA stability and expression

Author:

Zuo Sipeng12,Li Lin12,Wen Xuyang12,Gu Xiang12,Zhuang Ai12,Li Rui12,Ye Fuxiang12,Ge Shengfang12,Fan Xianqun12,Fan Jiayan12,Chai Peiwei12,Lu Linna12

Affiliation:

1. Department of Ophthalmology Ninth People's Hospital Shanghai Jiao Tong University School of Medicine Shanghai People's Republic of China

2. Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology Shanghai People's Republic of China

Abstract

AbstractBackgroundThe precise temporal and spatial regulation of N5‐methylcytosine (m5C) RNA modification plays essential roles in RNA metabolism, and is necessary for the maintenance of epigenome homeostasis. Howbeit, the mechanism underlying the m5C modification in carcinogenesis remains to be fully addressed.MethodsGlobal and mRNA m5C levels were determined by mRNA isolation and anti‐m5C dot blot in both retinoblastoma (RB) cells and clinical samples. Orthotopic intraocular xenografts were established to examine the oncogenic behaviours of RB. Genome‐wide multiomics analyses were performed to identify the functional target of NSUN2, including proteomic analysis, transcriptome screening and m5C‐methylated RNA immunoprecipitation sequencing (m5C‐meRIP‐seq). Organoid‐based single‐cell analysis and gene‐correlation analysis were performed to verify the NSUN2/ALYREF/m5C‐PFAS oncogenic cascade.ResultsHerein, we report that NSUN2‐mediated m5C RNA methylation fuels purine biosynthesis during the oncogenic progression of RB. First, we discovered that global and mRNA m5C levels were significantly enriched in RBs compared to normal retinas. In addition, tumour‐specific NSUN2 expression was noted in RB samples and cell lines. Therapeutically, targeted correction of NSUN2 exhibited efficient therapeutic efficacy in RB both in vitro and in vivo. Through multiomics analyses, we subsequently identified phosphoribosylformylglycinamidine synthase (PFAS), a vital enzyme in purine biosynthesis, as a downstream candidate target of NSUN2. The reintroduction of PFAS largely reversed the inhibitory phenotypes in NSUN2‐deficient RB cells, indicating that PFAS was a functional downstream target of NSUN2. Mechanistically, we found that the m5C reader protein ALYREF was responsible for the recognition of the m5C modification of PFAS, increasing its expression by enhancing its RNA stability.ConclusionsConclusively, we initially demonstrated that NSUN2 is necessary for oncogenic gene activation in RB, expanding the current understanding of dynamic m5C function during tumour progression. As the NSUN2/ALYREF/m5C‐PFAS oncogenic cascade is an important RB trigger, our study suggests that a targeted m5C reprogramming therapeutic strategy may be a novel and efficient anti‐tumour therapy approach.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Subject

Molecular Medicine,Medicine (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A review on the role of RNA methylation in aging-related diseases;International Journal of Biological Macromolecules;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3