Understanding Deepfake Research and Trends through Topic Modelling

Author:

Chen Chen1,Goh Dion Hoe‐Lian1

Affiliation:

1. Nanyang Technological University Singapore

Abstract

ABSTRACTDeepfake research has gained traction in recent years. Surveys have been conducted to summarize work on the detection and generation of deepfakes. However, a more comprehensive and quantitative overview that encompasses both technical and non‐technical areas is lacking. We address this gap using topic modelling to discover deepfake research topics in academic publications. Our results show that while detection techniques topics dominate the research field, other areas, such as privacy and legal research, offer potential avenues for further exploration.

Publisher

Wiley

Subject

Library and Information Sciences,General Computer Science

Reference8 articles.

1. Latent dirichlet allocation;Blei D. M.;Journal of Machine Learning Research,2003

2. Deepfakes on Twitter: Which Actors Control Their Spread?

3. A topic modeling comparison between lda, nmf, top2vec, and bertopic to demystify twitter posts. Frontiers;Egger R.;Sociology,2022

4. Deepfakes: Trick or treat?

5. Determining authenticity of video evidence in the age of artificial intelligence and in the wake of Deepfake videos

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3