Variable‐gain PD‐type iterative learning control for a class of nonlinear time‐varying systems

Author:

Zhang Xinxin12,Ding Huafeng3,Li Min3ORCID,Li Junxiang12

Affiliation:

1. School of Mechanical Engineering and Automation Wuhan Textile University Wuhan P.R. China

2. Hubei Key Laboratory of Digital Textile Equipment Wuhan Textile University Wuhan P.R. China

3. School of Mechanical Engineering and Electronic Information China University of Geosciences Wuhan P.R. China

Abstract

AbstractThis paper investigates variable‐gain PD‐type iterative learning control (ILC) for a class of nonlinear time‐varying systems to well balance high‐gain convergence rate and low‐gain noise transmission. Different from the classic PD‐type ILC, the control gains of the proposed method are variable. Each variable‐gain consists of an amplitude‐dependent term and an iteration‐varying term. The amplitude‐dependent terms vary with the amplitudes of tracking error and derivative of tracking error, and the iteration‐varying terms are increasing along the iteration axis. The proposed ILC achieves a faster convergence rate than low‐gain ILC and higher tracking accuracy with limited noise amplification than high‐gain ILC. Moreover, the convergence condition of the proposed method in the presence of external noise is provided. Simulation and experimental results demonstrate the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Control and Systems Engineering,Electrical and Electronic Engineering,Mathematics (miscellaneous)

Reference40 articles.

1. Data‐driven control and learning systems;Hou Z.;IEEE Tran. Ind. Electron.,2017

2. Adaptive nonsingular fixed‐time sliding mode control for uncertain robotic manipulators under actuator saturation;Sai H.;Isa Trans.,2022

3. Dynamic hybrid control of a hexapod walking robot: experimental verification;Zhong G.;IEEE Tran. Ind. Electron.,2016

4. Nonlinear H2$$ {\mathcal{H}}_2 $$ control for a nonlinear system with bounded varying parameters: application to pm stepper motors;Lee Y.;IEEE‐ASME Trans. Mechatron.,2017

5. Neural network based output feedback control for DC motors with asymptotic stability;Yang X.;Mech. Syst. Signal Process.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3