Deciphering the Selectivity of the Electrochemical CO2 Reduction to CO by a Cobalt Porphyrin Catalyst in Neutral Aqueous Solution: Insights from DFT Calculations

Author:

Cao Yu‐Chen1,Shi Le‐Le1,Li Man1,You Bo1,Liao Rong‐Zhen1ORCID

Affiliation:

1. Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica Hubei Key Laboratory of Materials Chemistry and Service Failure School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China

Abstract

AbstractDensity functional theory (DFT) calculations were conducted to investigate the cobalt porphyrin‐catalyzed electro‐reduction of CO2 to CO in an aqueous solution. The results suggest that CoII−porphyrin (CoII−L) undertakes a ligand‐based reduction to generate the active species CoII−L⋅, where the CoII center antiferromagnetically interacts with the ligand radical anion. CoII−L⋅ then performs a nucleophilic attack on CO2, followed by protonation and a reduction to give CoII−L−COOH. An intermolecular proton transfer leads to the heterolytic cleavage of the C−O bond, producing intermediate CoII−L−CO. Subsequently, CO is released from CoII−L−CO, and CoII−L is regenerated to catalyze the next cycle. The rate‐determining step of this CO2RR is the nucleophilic attack on CO2 by CoII−L⋅, with a total barrier of 20.7 kcal mol−1. The competing hydrogen evolution reaction is associated with a higher total barrier. A computational investigation regarding the substituent effects of the catalyst indicates that the CoPor−R3 complex is likely to display the highest activity and selectivity as a molecular catalyst.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3