Photocatalytic Degradation of Malachite Green by Titanium Dioxide/Covalent Organic Framework Composite: Characterization, Performance and Mechanism

Author:

Yao Dongmei12ORCID,Xie Xiaoting12,Liang Xuling12,Lu Sufen12,Lai Hongfang12

Affiliation:

1. Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology Hechi University Hechi 546300 China

2. Guangxi Colleges Universities Key Laboratory of Exploitation and Utilization of Microbial and Botanical Resources Hechi University Hechi 546300 China

Abstract

AbstractIn this paper, a titanium dioxide/covalent organic framework (TiO2/COF) composite was prepared and its photocatalytic removal of dye was investigated. Using tetrabutyl titanate as a titanium source, TiO2 nanomaterial was prepared by sol‐gel method. In the presence of TiO2, TiO2/COF core‐shell composite was prepared by solvothermal synthesis using melamine and 1,4‐phthalaldehyde as ligands. The prepared materials are characterized by SEM, TEM, XPS, XRD, TG, FTIR, BET, EPR, PL, and UV‐Vis‐DRS techniques. Using malachite green as a model of dye wastewater, the photocatalytic degradation performance of TiO2/COF composites was investigated under the irradiation of ultraviolet light. The results show that the modification of COF significantly improves the photocatalytic efficiency of TiO2, the degradation rate increases from 69.77 % to 93.64 %, and the reaction rate constant of the first‐order kinetic equation is increased from 0.0078 min−1 to 0.0192 min−1. Based on the free radical capture experiment, the photocatalytic degradation mechanism of TiO2/COF was discussed, and the feasibility of its photocatalytic degradation of malachite green was theoretically clarified. Accordingly, a simple and practical method for photocatalytic degradation of malachite green was constructed, which has potential application value in the degradation of dye wastewater.

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3