Solventless Synthesis of Zinc Sulphide Nanoparticles from Zinc Bis(diethyldithiocarbamate) as a Single Source Precursor

Author:

Saah Selina Ama1ORCID,Sakyi Patrick Opare1,Boadi Nathaniel Owusu2ORCID,Tieku Franklyn Addai1,Boampong Ampem Kwabena1

Affiliation:

1. Department of Chemical Sciences University of Energy and Natural Resources Sunyani Ghana

2. Department of Chemistry Kwame Nkrumah University of Science and Technology Kumasi Ghana

Abstract

AbstractThis study explores the synthesis of nanoparticles through the thermal decomposition of single‐source precursors, a method gaining popularity due to its low cost, minimal environmental toxicity, rapidity, scalability, and the ability to form nanoparticles with few defects. Zinc ethyl carbamate was synthesized and characterized using 1H NMR and infrared spectroscopy. Its purity was confirmed through microelemental analysis and melting point determination. The melting point of the complex was determined to be 165 °C. The thermogravimetric analyses indicated a one‐step decomposition of zinc ethyl carbamate with a decomposition onset of of 200 °C, yielding a stable ZnS residue. Further thermal decomposition led to the formation of wurtzite phase ZnS nanoparticles, as evidenced by XRD. SEM micrographs displayed mixed spherical, and cubic unevenly sized, polydispersed nanoparticles, while EDX revealed approximately a 1 : 1 Zn to S ratio. Estimated band gap from the Tauc's plot gave 3.93 eV and 3.42 eV for the nanoparticles synthesized at 300 and 400 °C respectively. The wide difference in the band gaps may be as a result of the larger particles observed at 400 °C and the deformations in the sample as observed in the SEM.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3