Affiliation:
1. Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University Nanjing 211816 China
2. Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) Nanjing Tech University Nanjing 211816 China
3. The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005 China
Abstract
AbstractIncreasing evidence shows that abnormal copper (Cu) metabolism is highly related to many diseases, such as Alzheimer's disease, Wilson's disease, hematological malignancies and Menkes disease. Very recently, cuproptosis, a Cu‐dependent, programmed cell death was firstly described by Tsvetkov et al. in 2022. Their findings may provide a new perspective for the treatment of related diseases. However, the concrete mechanisms of these diseases, especially cuproptosis, remain completely unclear, the reason of which may be a lack of reliable tools to conduct highly selective, sensitive and high‐resolution imaging of Cu in complex life systems. So far, numerous small‐molecular fluorescent probes have been designed and utilized to explore the Cu signal pathway. Among them, fluorescence turn‐on probes greatly enhance the resolution and accuracy of imaging and may be a promising tool for research of investigation into cuproptosis. This review summarizes the probes developed in the past decade which have the potential to study cuproptosis, focusing on the design strategies, luminescence mechanism and biological‐imaging applications. Besides, we put forward some ideas concerning the design of next‐generation probes for cuproptosis, aiming to tackle the main problems in this new field. Furthermore, the prospect of cuproptosis in the treatment of corresponding diseases is also highlighted.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献