Eco‐friendly Regioselective Synthesis, Biological Evaluation of Some New 5‐acylfunctionalized 2‐(1H‐pyrazol‐1‐yl)thiazoles as Potential Antimicrobial and Anthelmintic Agents

Author:

Aggarwal Ranjana12ORCID,Sharma Manisha1ORCID,Hooda Mona13,Sharma Prabodh C.4,Sharma Diksha5

Affiliation:

1. Department of Chemistry Kurukshetra University Kurukshetra 136119 Haryana India

2. Council of Scientific and Industrial Research-National Institute of Science Communication and Policy Research New Delhi 110012 India

3. Department of Chemistry Gurugram University Gurugram 122003 Haryana India

4. School of Pharmaceutical Science Delhi Pharmaceutical Science and Research University New Delhi 110017 India

5. Swami Devi Dyal Institute of Pharmacy Golpura, Barwala 134118 India

Abstract

AbstractThe present study describes an eco‐friendly NBS‐assisted regioselective synthesis of new 5‐acylfunctionalized 5‐acylfunctionalized 2‐(1H‐pyrazol‐1‐yl)thiazoles by condensation of 3,5‐dimethyl‐1H‐pyrazole‐1‐carbothioamide with unsymmetrical 1,3‐diketones under solvent‐free conditions. The structural elucidation of the newly synthesized compounds was accomplished using various spectroscopic techniques viz. FTIR, NMR and mass spectrometry. All the newly synthesized compounds were examined for their in vitro antimicrobial potential against both pathogenic gram positive and gram negative bacterial and fungal species as well as anthelmintic activity against Pheretima posthuma earthworms. The results of antimicrobial activity revealed that all tested compounds 3 a–j showed excellent antimicrobial potential particularly against S. aureus. It was also observed that compounds 3 e and 3 i (MIC=62.5 μg/mL) showed greater potency against E. coli, whereas compounds 3 a and 3 h (MIC=50 μg/mL and 62.5 μg/mL) demonstrated better activity against P. aeruginosa and compound 3 i (MIC=62.5 μg/mL) exhibited superior activity against S. pyogenus when compared to standard drug Ampicillin (MIC=100μg/mL). Compound 3 e and 3 j revealed remarkable antifungal and anthelmintic activities. To find out binding interactions of target compounds with target proteins and pharmacokinetic parameters of the compounds, in silico investigations involving molecular docking studies and ADMET predictions were also performed.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3