ZIF‐Co3O4@ZIF‐Derived Urchin‐Like Hierarchically Porous Carbon as Efficient Bifunctional Oxygen Electrocatalysts

Author:

Zhang Lingling1,Wang Xia1,Gong Chong2,Sun Weiyan1,Lu Zihan1

Affiliation:

1. Haidu college Qingdao Agriculture University Yantai 265200 China

2. College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 China

Abstract

AbstractCo3O4 nanoparticles were sandwiched into interlayers between ZIF‐8 and ZIF‐67 to form ZIF‐Co3O4@ZIF precursors. Pyrolysis of ZIF‐Co3O4@ZIF yielded an urchin‐like hierarchically porous carbon (Co@CNT/NC), the thorns of which were carbon nanotubes embedded Co nanoparticles. With large specific surface area and hierarchically porous structure, as‐prepared Co@CNT/NC exhibited excellent bifunctional oxygen electrocatalytic performances. It has good ORR performance with E1/2 of 0.85 V, which exceeds the Pt/C half‐wave potential (E1/2=0.83 V). In addition, Co@CNT/NC has an OER performance close to that of RuO2. To further demonstrate the effect of Co modifying on the properties, the samples were subjected to acid washing treatment. Co‐based nanoparticles were proved to After acid washing, there was obvious loss of Co particles in Co@CNT/NC, resulting in poor oxygen electrocatalysis. So, the pyrolysis products of ZIF‐8‐Co3O4@ZIF‐67 retained large specific surface area and porous structure can be retained, and on the other hand, the carbon tube structure and original polyhedron framework. Besides, existence of Co nanoparticle@carbon nanotube provided more active sites and improved the ORR and OER performances.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3