Electrochemical Determination of Chloroquine Phosphate in Real Samples Using a Diresorcinate‐1,10‐phenanthrolinecobalt(II)‐Modified Glassy Carbon Electrode

Author:

Kassa Adane12,Tigineh Getinet Tamiru2,Abebe Atakilt2ORCID

Affiliation:

1. Department of Chemistry College of Natural and Computational Sciences Debre Markos University 269 Debre Markos Ethiopia

2. Department of Chemistry College of Science Bahir Dar University 79 Bahir Dar Ethiopia

Abstract

AbstractChloroquine phosphate (CQP) is used for malaria treatment. As it is facing increasing resistance, it needs continuous monitoring using sensitive and specific detection methods. In this work, a voltammetric sensor was prepared by electropolymerization of a diresorcinate‐1,10‐phenanthrolinecobalt(II) complex on a glassy carbon electrode (poly(DHRPCo)/GCE) which was followingly characterized. Compared with a bare GCE, CQP showed single well shaped irreversible oxidative peak at the poly(DHRPCo)/GCE. The peak current showed excellent linearity with CQP concentration in the range of 0.005–300.0 μm with a detection limit of 0.39 nm. The response of CQP at poly(DHRPCo)/GCE was not influenced by the presence of amoxicillin, ciprofloxacillin and paracetamol in addition to its high stability and reproducibility. It was applied for detection of CQP in various real samples, including three brands of tablets, human blood serum, and urine samples. The detected amount in tablets were in the range 98.4–103.2 % of their labeled value. Spike recovery results in human blood serum, urine, and tablet samples were 99.35–100.28 %, 99.03–100.32 %, and 98.40–100.41 %, respectively. Interference recovery results with less than 4.60 % error, the lower limit of detection and the wider dynamic range than most of the previously reported methods validate the potential applicability of the proposed method for CQP determination in various real samples with complex matrices.

Publisher

Wiley

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3