Development of sustainable cellulose‐based composite of polypropylene reinforced by recycled microfibrillar poly (ethylene terephthalate)

Author:

Khamseh Mahdi1,Maroufkhani Mahshid2ORCID,Moghanlou Sajjad1,Lotfi Alireza1ORCID,Pourabbas Behzad1,Razavi Aghjeh Mir Karim1ORCID

Affiliation:

1. Department of Polymer Engineering Sahand University of Technology Tabriz Iran

2. Department of Chemistry, Material and Polymer Engineering Buein Zahra Technical University Qazvin Iran

Abstract

AbstractSustainable composites based on blends from polypropylene (PP) and recycled polyethylene terephthalate (RPET) and wood flour (WF) were prepared under industry‐relevant conditions by melt extrusion, followed by continuous drawing through spinnerets. Maleic anhydride grafted polypropylene (PP‐g‐MA) was employed to improve the compatibility between matrix and WF. The effects of incorporation of WF and RPET microstructure on the morphological features, rheological measurements, and mechanical properties were investigated. The drawing process converted elliptical RPET phase into highly oriented microfibrillar structure, as characterized by means of scanning electron microscopy (SEM). The highly oriented blend (HOB) represented nonterminal behavior due to the presence of physical networks and enhanced surface area of microfibers for chemical interactions. The tensile strength of neat PP increased by the addition of WF and the existence of microfibrillar RPET phase, whereas the microstructure of RPET had more pronounce effect. The tensile strength and elastic modulus of PP reinforced by WF and oriented RPET improved by 65% and 92%, respectively, demonstrating the high potential of this environmental‐friendly reinforcement method to intensify the mechanical properties of PP.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

Reference75 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3