Classifying metal‐binding sites with neural networks

Author:

Oostrom Marjolein1ORCID,Akers Sarah1,Garrett Noah2,Hanson Emma2,Shaw Wendy2ORCID,Laureanti Joseph A.2

Affiliation:

1. National Security Directorate Pacific Northwest National Laboratory Richland Washington USA

2. Physical and Computational Sciences Directorate Pacific Northwest National Laboratory Richland Washington USA

Abstract

AbstractTo advance our ability to predict impacts of the protein scaffold on catalysis, robust classification schemes to define features of proteins that will influence reactivity are needed. One of these features is a protein's metal‐binding ability, as metals are critical to catalytic conversion by metalloenzymes. As a step toward realizing this goal, we used convolutional neural networks (CNNs) to enable the classification of a metal cofactor binding pocket within a protein scaffold. CNNs enable images to be classified based on multiple levels of detail in the image, from edges and corners to entire objects, and can provide rapid classification. First, six CNN models were fine‐tuned to classify the 20 standard amino acids to choose a performant model for amino acid classification. This model was then trained in two parallel efforts: to classify a 2D image of the environment within a given radius of the central metal binding site, either an Fe ion or a [2Fe‐2S] cofactor, with the metal visible (effort 1) or the metal hidden (effort 2). We further used two sub‐classifications of the [2Fe‐2S] cofactor: (1) a standard [2Fe‐2S] cofactor and (2) a Rieske [2Fe‐2S] cofactor. The accuracy for the model correctly identifying all three defined features was >95%, despite our perception of the increased challenge of the metalloenzyme identification. This demonstrates that machine learning methodology to classify and distinguish similar metal‐binding sites, even in the absence of a visible cofactor, is indeed possible and offers an additional tool for metal‐binding site identification in proteins.

Funder

Pacific Northwest National Laboratory

U.S. Department of Energy

Publisher

Wiley

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3