Flexible carbon‐based fluoropolymer composites for effective EMI shielding and heat dissipation

Author:

Łapińska Anna1ORCID,Grochowska Natalia1,Filak Karolina1,Dużyńska Anna1,Polański Marek2,Wyrębska Iwona2,Jóźwik Paweł2,Gołofit Tomasz3,Dydek Kamil4,Michalski Przemysław P.1,Plichta Andrzej3

Affiliation:

1. Faculty of Physics Warsaw University of Technology Warsaw Poland

2. Faculty of Advanced Technologies and Chemistry Military University of Technology Warsaw Poland

3. Faculty of Chemistry Warsaw University of Technology Warsaw Poland

4. Faculty of Material Science and Engineering Warsaw University of Technology Warsaw Poland

Abstract

AbstractContemporary applications require protection against overheating and electromagnetic radiation interference, preferably with reduced mass and enhanced basic performance, such as flammability or chemical or UV resistance and often also low or non‐electrically conductive. Materials exhibiting all these functions can be designed, but there is usually not just one but several different materials with advanced processing requirements; therefore, a simple manufacturing method providing percolation path formation involving powder mixing and hot pressing of providing excellent flexibility terpolymer comprising tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride monomeric units (THV)‐based nanocomposites is presented here. The addition of the graphene nanoplatelets (GNPs) and multiwalled carbon nanotubes (MWCNTs) significantly improves the EMI shielding effectiveness, up to SETOT = 23 dB for the GNP filler, SETOT = 17 dB for the MWCNT/GNP filler per 1 mm samples thickness and enhances almost 900% the thermal conductivity to almost 2 W/mK per GNP filler. Besides this improvement, the electrical conductivity remains at a low level, not surpassing 1.5 S/cm, which is, as mentioned above, beneficial in many applications, especially thermal management. Moreover, the proposed material is an excellent alternative to flexible foam or sponges.Highlights Structural, electrical, EMI shielding, and thermal properties of flexible THV/GNP, THV/MWCNT, and THV/MWCNT/GNP nanocomposites are shown here. The oriented, long as over 1 mm filler paths are observed. The GNP filler provides the best thermal conductivity enhancement of over 800% compared to bare polymer. The EMI shielding effectiveness is dominated by absorption for all THV‐based nanocomposites. The electrical conductivity follows the power law, reaching σ = 1.49 S/cm for GNP‐filled nanocomposites.

Funder

Wojskowa Akademia Techniczna

Narodowe Centrum Badań i Rozwoju

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3