Active‐learning for global optimization of Ni‐Ceria nanoparticles: The case of Ce4−xNixO8−x (x = 1, 2, 3)

Author:

Barrios Herrera Lizandra1ORCID,Lourenço Maicon Pierre2ORCID,Hostaš Jiří13,Calaminici Patrizia4ORCID,Köster Andreas M.4ORCID,Tchagang Alain3ORCID,Salahub Dennis R.1

Affiliation:

1. Department of Chemistry, Department of Physics and Astronomy, CMS Centre for Molecular Simulation, IQST Institute for Quantum Science and Technology, Quantum Alberta University of Calgary Calgary Canada

2. Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde (CCENS) Universidade Federal do Espírito Santo Espírito Santo Brasil

3. Digital Technologies Research Centre National Research Council of Canada Ottawa Canada

4. Departamento de Química CINVESTAV Mexico Mexico

Abstract

AbstractNi‐CeO2 nanoparticles (NPs) are promising nanocatalysts for water splitting and water gas shift reactions due to the ability of ceria to temporarily donate oxygen to the catalytic reaction and accept oxygen after the reaction is completed. Therefore, elucidating how different properties of the Ni‐Ceria NPs relate to the activity and selectivity of the catalytic reaction, is of crucial importance for the development of novel catalysts. In this work the active learning (AL) method based on machine learning regression and its uncertainty is used for the global optimization of Ce(4‐x)NixO(8‐x) (x = 1, 2, 3) nanoparticles, employing density functional theory calculations. Additionally, further investigation of the NPs by mass‐scaled parallel‐tempering Born‐Oppenheimer molecular dynamics resulted in the same putative global minimum structures found by AL, demonstrating the robustness of our AL search to learn from small datasets and assist in the global optimization of complex electronic structure systems.

Funder

Fundação de Amparo à Pesquisa e Inovação do Espírito Santo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3