Synthesis of ZrO2‐NdO‐based mixed nanomaterial using green capping agent and its functionalization as electrode material for energy devices: Pseudo capacitors and water splitting

Author:

Azhar Sundus1,Ahmad Khuram Shahzad1ORCID,Abrahams Isaac2,Lin Wang3,Gupta Ram K.3,Albaqami Munirah D.4,Mohammad Saikh4,Gul Mahwash Mahar1

Affiliation:

1. Department of Environmental Sciences Fatima Jinnah Women University Rawalpindi Pakistan

2. School of Biological and Chemical Sciences Queen Mary University of London London UK

3. Department of Chemistry Pittsburg State University Pittsburg Kansas USA

4. Department of Chemistry, College of Science King Saud University Riyadh Saudi Arabia

Abstract

AbstractThis study investigates the environmentally friendly synthesis of ZrO2‐NdO mixed nanomaterial using green reducing and capping agents derived from the plant Amaranthus viridis. X‐ray diffraction (XRD) analysis confirmed the successful synthesis of the mixed nanomaterial, revealing an optical band gap of 2.5 eV. The morphology was characterized by spherical‐shaped particles with an average size ranging from 66 to 77 nm. The synthesized ZrO2‐NdO mixed nanomaterial was evaluated for its potential application as an electrode material in energy devices, specifically for pseudocapacitors and water splitting studies. Electrochemical performance was assessed using cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) techniques. Notably, a specific capacitance of 573.5 F/g was achieved through CV at a scan rate of 2 mV/s. Fabricated electrocatalyst was further analyzed for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), and the results showed better over potential value of 164 mV for HER studies. The stability analysis further endorsed the large‐scale commercialization possibility of ZrO‐NdO‐based electrode material.

Funder

King Saud University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3