Differential contribution of between and within‐brain coupling to movement synchronization

Author:

Marton‐Alper Inbar Z.1,Markus Andrey1ORCID,Nevat Michael1,Bennet Rotem1,Shamay‐Tsoory Simone G.12

Affiliation:

1. Department of Psychology University of Haifa Haifa Israel

2. The Integrated Brain and Behavior Research Center (IBBRC) University of Haifa Haifa Israel

Abstract

AbstractA fundamental characteristic of the human brain that supports behavior is its capacity to create connections between brain regions. A promising approach holds that during social behavior, brain regions not only create connections with other brain regions within a brain, but also coordinate their activity with other brain regions of an interaction partner. Here we ask whether between‐brain and within‐brain coupling contribute differentially to movement synchronization. We focused on coupling between the inferior frontal gyrus (IFG), a brain region associated with the observation‐execution system, and the dorsomedial prefrontal cortex (dmPFC), a region associated with error‐monitoring and prediction. Participants, randomly divided into dyads, were simultaneously scanned with functional near infra‐red spectroscopy (fNIRS) while performing an open‐ended 3D hand movement task consisting of three conditions: back‐to‐back movement, free movement, or intentional synchronization. Results show that behavioral synchrony was higher in the intentional synchrony compared with the back‐to‐back and free movement conditions. Between‐brain coupling in the IFG and dmPFC was evident in the free movement and intentional synchrony conditions but not in the back‐to‐back condition. Importantly, between‐brain coupling was found to positively predict intentional synchrony, while within‐brain coupling was found to predict synchronization during free movement. These results indicate that during intentional synchronization, brain organization changes such that between‐brain networks, but not within‐brain connections, contribute to successful communication, pointing to shift from a within‐brain feedback loop to a two‐brains feedback loop.

Funder

Israel Science Foundation

Publisher

Wiley

Subject

Neurology (clinical),Neurology,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology,Anatomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3