An enhanced predictive current control technique for interior permanent magnet synchronous motor drives with extended voltage space vectors for electric vehicles

Author:

Kumar Kasoju Bharath1ORCID,Praveen Kumar Kunisetti V.1

Affiliation:

1. Department of Electrical Engineering SVNIT Surat India

Abstract

SummaryPermanent magnet synchronous motors (PMSM) are widely employed in the application of electric vehicles (EVs) due to their simplicity of operation. Model predictive current control (MPCC) is an advanced technique used to control the PMSM owing advantages like multi‐variable cost function and good dynamic performance. Cost function of predictive current control (PCC) does not require the flux weighting factor; hence, it is simple in the selection of suitable voltage vector (VV). The conventional PCC (C‐PCC) applied to interior PMSM (IPMSM) contains more torque and flux ripples as it includes only one set of voltage vectors for all speed ranges. In proposed PCC (P‐PCC), the magnitude and location of voltage vectors is to be selected as large and small VVs to reduce torque ripples. The P‐PCC in this article utilizes two set of extended voltage vectors (large and small VVs) based on the applied speed change in dynamic conditions and hence reduces the ripple content. Incorporating maximum torque per ampere (MTPA) control in this article serves the purpose of optimizing the machine performance. By adding MTPA to the proposed method, it is aimed to enhance the machine performance with less ripples and improved torque response. Simulation results are presented for conventional and P‐PCC to highlight the effectiveness and efficacy of the P‐PCC. The P‐PCC is experimentally verified with 3.7 kW PMSM using d‐SPACE controller.

Funder

Science and Engineering Research Board

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3