Incorporating statistical and machine learning techniques into the optimization of correction factors for software development effort estimation

Author:

Nhung Ho Le Thi Kim1,Van Hai Vo2ORCID,Silhavy Petr3,Prokopova Zdenka3,Silhavy Radek3ORCID

Affiliation:

1. Faculty of Information Technology University of Science–Vietnam National University Ho Chi Minh City Vietnam

2. Faculty of Information Technology Industrial University of Ho Chi Minh City Ho Chi Minh City Vietnam

3. Faculty of Applied Informatics Tomas Bata University in Zlín Zlín Czech Republic

Abstract

AbstractAccurate effort estimation is necessary for efficient management of software development projects, as it relates to human resource management. Ensemble methods, which employ multiple statistical and machine learning techniques, are more robust, reliable, and accurate effort estimation techniques. This study develops a stacking ensemble model based on optimization correction factors by integrating seven statistical and machine learning techniques (K‐nearest neighbor, random forest, support vector regression, multilayer perception, gradient boosting, linear regression, and decision tree). The grid search optimization method is used to obtain valid search ranges and optimal configuration values, allowing more accurate estimation. We conducted experiments to compare the proposed method with related methods, such as use case points‐based single methods, optimization correction factors‐based single methods, and ensemble methods. The estimation accuracies of the methods were evaluated using statistical tests and unbiased performance measures on a total of four datasets, thus demonstrating the effectiveness of the proposed method more clearly. The proposed method successfully maintained its estimation accuracy across the four experimental datasets and gave the best results in terms of the sum of squares errors, mean absolute error, root mean square error, mean balance relative error, mean inverted balance relative error, median of magnitude of relative error, and percentage of prediction (0.25). The p‐value for the t‐test showed that the proposed method is statistically superior to other methods in terms of estimation accuracy. The results show that the proposed method is a comprehensive approach for improving estimation accuracy and minimizing project risks in the early stages of software development.

Funder

Univerzita Tomáše Bati ve Zlíně

Publisher

Wiley

Subject

Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3