Measuring the Interactions and Influence of Amphipathic Copolymers with Lipid Monolayers and Bilayers as Models of Biological Membranes

Author:

Frost Charlotte12,Wiedbrauk Sandra12ORCID,Graham Elizabeth3ORCID,Yepuri Nageshwar R.4ORCID,Nelson Andrew R. J.5ORCID,Boase Nathan R. B.12ORCID

Affiliation:

1. Centre for Materials Science Queensland University of Technology Brisbane QLD 4000 Australia

2. School of Chemistry and Physics Queensland University of Technology Brisbane QLD 4000 Australia

3. Central Analytical Research Facility Queensland University of Technology Brisbane QLD 4000 Australia

4. National Deuteration Facility Australian Nuclear Science and Technology Organization Kirrawee DC NSW 2232 Australia

5. Australian Centre for Neutron Scattering Australian Nuclear Science and Technology Organization Lucas Heights NSW 2234 Australia

Abstract

AbstractAmphipathic copolymers are useful materials for nanomedicine, owing to their ability to self‐assemble into nanoparticles, act as surfactants for inorganic materials, or for their favorable interactions with lipid membranes. Despite their widespread use, there is still a range of questions about the physicochemical properties that are necessary to drive their interactions at biological interfaces. To fully understand these interactions requires a diverse range of complementary analytical techniques. In this work, a library of neutral amphipathic methacrylate copolymers is synthesized by reversible addition‐fragmentation chain‐transfer polymerization (RAFT) polymerization, to investigate the effect of polymer composition and nature of the hydrophobic comonomer on interactions with model lipid membranes. These materials are shown to interact with Langmuir lipid monolayers, and neutron reflectometry demonstrates that hydrophobic interactions lead to the polymers intercalating with the monolayers. More complex models of lipid bilayers are studied using an in situ quartz crystal microbalance (QCM) model and shows while the composition and hydrophobic comonomer affect the stability of these interactions, there is no effect on the viscoelasticity of the lipid membranes. The in‐depth understanding of these interfacial interactions afforded by this suite of analytical tools will allow for more complex copolymers to be studied, providing a greater understanding of key processes in nanomedicine, such as cellular entry and endosomal escape.

Funder

Centre for Materials Science, Queensland University of Technology

Australian Institute of Nuclear Science and Engineering

Publisher

Wiley

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3