Synthesis and Polymerization of the Bio‐Benzoxazine Derived from Resveratrol and Thiophenemethylamine and Properties of its Polymer

Author:

Zhong Min1,Yin Ren12,Sun Zichao1,Jiang Tianjia3,Sheng Weichen1,Zhang Kan1ORCID

Affiliation:

1. School of Materials Science and Engineering Jiangsu University Zhenjiang 212013 China

2. Tiger Surface Technology New Material (Suzhou) Co., LTD Suzhou 215413 China

3. Wuxi Foreign Language School Wuxi 214131 China

Abstract

AbstractResveratrol and 2‐thiophenemethylamine have been employed in the synthesis of a novel tri‐functional benzoxazine (RES‐th) to develop the bio‐benzoxazine monomer. The chemical structure of the synthesized monomer is confirmed by various characterization technics. The polymerization behavior is monitored by in situ Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The in situ FTIR results reveal distinct reaction mechanisms for the three oxazine rings presented in RES‐th, with both ether and phenolic Mannich bridge structures observed in the products. The activation energy values of RES‐th are calculated to be 119.05, 120.97, and 119.44 kJ mol−1 by Kissinger, Ozawa, and Starink methods, respectively, which are all based on the heat flow curves at various heating temperatures. The thermal stability and flame retardancy of the resulting polybenzoxazine (poly(RES‐th)) are investigated by thermogravimetric analysis (TGA) and microscale combustion calorimeter (MCC). The values of Td5 and Td10 of polybenzoxazine are found to be 356 °C and 399 °C, respectively, with a char yield of 66.3% at 800 °C. The prepared polybenzoxazine also demonstrates nonflammability characteristics with the values of heat release capacity (HRC) and total heat release rate (THR) of 18.65 J (g K)−1 and 2.69 kJ g−1, respectively. These findings suggest that the thermoset, poly(RES‐th), is a promising candidate for fire‐resistant applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3