Nanophase Segregation Drives Heterogeneous Dynamics in Amphiphilic PLMA‐b‐POEGMA Block‐Copolymers with Densely Grafted Architecture

Author:

Pipertzis Achilleas1ORCID,Skandalis Athanasios2ORCID,Pispas Stergios2ORCID,Floudas George13ORCID

Affiliation:

1. Department of Physics University of Ioannina Ioannina 45110 Greece

2. Theoretical and Physical Chemistry Institute National Hellenic Research Foundation 48 Vassileos Constantinou Ave. Athens 11635 Greece

3. Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany

Abstract

AbstractThe self‐assembly and dynamics of amphiphilic diblock copolymers composed of densely grafted poly(oligo ethylene glycol methacrylate) (POEGMA) and poly(lauryl methacrylate) (PLMA) by means of calorimetry, small‐angle X‐ray scattering (SAXS), and dielectric spectroscopy are investigated. It is reported that the inherent immiscibility between the parent homopolymers, combined with the increased molar mass, results in strong segregation, maintained up to elevated temperatures (i.e., T = 423 K). SAXS reveals that well‐separated POEGMA and PLMA domains self‐assemble into spheres with bicontinuous cubic packing and in lamellar nanostructure in copolymers with respective compositions of 16 and 52 wt.% PLMA. This strong segregation enables the weak crystallization/melting of the short ethylene glycol chains. Additionally, molecular dynamics are investigated through isothermal dielectric and calorimetry measurements. The segmental dynamics (i.e., Tg‐related) of POEGMA and PLMA closely resemble that found in respective homopolymers, implying heterogeneous dynamics. In the glassy state, the local motions of the POEGMA side chains predominantly govern the observed secondary processes in the copolymers. The results on the heterogeneous dynamics in the current amphiphilic diblock copolymers with the densely grafted architecture are compared and contrasted with copolymers having a bottle–brush architecture lacking the amphiphilic nature.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3