[NVim]Br and Poly([NVim]Br‐Co‐AM): Synthesis and Effects on Inhibiting Clay Swelling and Dispersion and the Mechanisms

Author:

Li Lan1,Ren Yanjun12,Yao Rugang3,Yang Hong4

Affiliation:

1. Petroleum Engineering School Southwest Petroleum University Chengdu 610500 China

2. National Engineering Research Center of Oil & Gas Drilling and Completion Technology Chengdu 610500 China

3. GWDC Drilling Fluids Company Beijing 100101 China

4. No.1 Gas production Plant of Jianghan Oil Field Company Sinopec Co., Ltd. Chongqing 404100 China

Abstract

AbstractTo solve the downhole problems correlated with clay hydration swelling and dispersion under high‐temperature conditions, a 1‐aminoethyl‐3‐vinylimidazolium bromide ([NVim]Br) and a [NVim]Br/acrylamide copolymer (poly([NVim]Br‐co‐AM)) are synthesized and used as inhibitors. The molecular structures of [NVim]Br and poly([NVim]Br‐co‐AM) are characterized by FT‐IR and 1H‐NMR. The inhibition properties of [NVim]Br and poly([NVim]Br‐co‐AM) are evaluated by free swelling and dispersion tests, linear swelling, hot roll recovery experiments and thermogravimetric analyses.The inhibition mechanisms were revealed by X‐ray diffraction, zeta potential, wettability analysis and ESEM observation. The results showed that both [NVim]Br and poly([NVim]Br‐co‐AM) has significantly superior inhibition performance compared with the common inhibitors KCl, polyether amine D230 and polyquaternium‐7. Both [NVim]Br and poly([NVim]Br‐co‐AM) can resist 250 °C. [NVim]Br performed excellently in inihibiting both crystalline and osmotic swelling, which depended on the strong electrostatic adsorption and hydrogen bonds of imidazole cations and primary amine in [NVim]+. Poly([NVim]Br‐co‐AM) exerted excellent inhibition by minimizing osmotic swelling, reducing hydrophilicity and increasing clay bonding. The results are important for understanding the rational design of novel efficient inhibitors for drilling high‐temperature shale formation.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3