Zn2+/Poly(2‐Hydroxyethyl Acrylate/Itaconic Acid) Hydrogels as Potential Antibacterial Wound Dressings

Author:

Vuković Jovana S.1,Radić1 Marija M. Babić1,Trifunović Saša B.2,Koch Thomas2,Perić‐Grujić Aleksandra A.1,Vojnović Sandra3,Tomić Simonida Lj.1ORCID

Affiliation:

1. University of Belgrade Faculty of Technology and Metallurgy Karnegijeva 4 Belgrade 11000 Serbia

2. Institute of Materials Science and Technology TU Wien Getreidemarkt 6 Vienna 1060 Austria

3. University of Belgrade Institute of Molecular Genetics and Genetic Engineering Vojvode Stepe 444a Belgrade 11000 Serbia

Abstract

AbstractAntibacterial hydrogels, as an advanced approach, can create optimal conditions for wound healing, even in the fight against stubborn and difficult‐to‐treat wound infections. Interestingly, pH is an often neglected clinical parameter, although it has a significant impact on the wound healing process. At different stages of wound healing, the pH in the wound bed changes from slightly alkaline to neutral to acidic. To develop novel pH‐sensitive antibacterial hydrogel dressings, Zn2+‐loaded poly(2‐hydroxyethyl acrylate/itaconic acid) hydrogels are synthesized. The hydrogels exhibit pH‐sensitive swelling in the physiologically relevant pH range, with a pronounced swelling ability at neutral pH. The controlled release of Zn2+ occurs in a buffer of pH 7.40 at 37 °C. The liquid transport mechanism and release kinetics are evaluated using the specific kinetic models of Ritger‐Peppas and Peppas‐Sahlin. The effect of Zn2+ on structural, thermal, swelling, cytocompatibility, and antibacterial properties is evaluated by Fourier transform infrared spectroscopy, differential scanning calorimetry, swelling studies, MTT, and antibacterial tests. The hydrogels show excellent antibacterial activity against Escherichia coli. The research opens new perspectives for efficient wound healing management, and the extension of the study will be orchestrated by optimising the hydrogel composition to achieve improved performance.

Publisher

Wiley

Subject

Materials Chemistry,Organic Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3