Affiliation:
1. Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430074 China
Abstract
AbstractThe development of poly(ethylene oxide) (PEO)‐based solid polymer electrolytes (SPEs) is limited by the semi‐crystalline nature of PEO and the extremely strong EO‐Li+ interactions. To promote the rapid migration of Li+, a one‐step method combining radical polymerization and ring‐opening polymerization catalyzed simultaneously by lithium carboxylate is proposed to construct multi‐component graft copolymer electrolytes (GCPEs) in this study. Tailored macroinitiator with catalytic and initiated sites (PAALi(OH‐Br)) realizes one‐step polymerizations of vinyl monomers and cyclic monomers, and provides GCPEs with poly(ethylene glycol) (PEG) and poly(ε‐caprolactone) (PCL) side chains. The grafted structure of GCPE greatly facilitates the intra‐chain hopping of Li+, resulting in excellent ionic conductivity. The introduction of PCL further improves the tLi+ of GCPE. The three‐component graft copolymer electrolyte constructed by polystyrene (PS), PEO, and PCL exhibits high tensile stress (1.62 MPa), a high ionic conductivity (2.4 × 10−5 S cm−1, 30 °C), and a high tLi+ of 0.47 and high electrochemical stability.
Funder
National Natural Science Foundation of China
Subject
Materials Chemistry,Organic Chemistry,Polymers and Plastics,Physical and Theoretical Chemistry,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献