Affiliation:
1. MPA‐11: Materials Synthesis & Integrated Devices Los Alamos National Laboratory Los Alamos NM 87545 USA
Abstract
AbstractCarbon‐based materials are extensively used in fuel cell applications due to their crucial role in maintaining high performance. Particularly, carbon black (CB) stands out as a preferred electrode material for fuel cells, owing to its high electrical conductivity and large surface area. This review focuses on the functionalization of CB and its use as a support for Pt‐based catalysts in proton exchange membrane fuel cells. Functionalization strategies include oxidation, covalent functionalization, as well as polymer grafting or impregnation. Various approaches to functionalize the CB surface are discussed that effectively tailor the surface properties of electrodes, leading to improved fuel cell performance. The improvements are seen in enhanced dispersibility of catalyst particles, better ionomer distribution, increased catalyst stability, and reduced carbon corrosion. This review provides an overview of various modifications applied to CB to enhance their structural and electrochemical properties, thereby boosting fuel cell performance.
Funder
Los Alamos National Laboratory
Advanced Research Projects Agency - Energy