Investigation on quenching characteristics of parallel narrow channels for deflagration flames

Author:

Lu Yawei1,Guo Pinkun1,Wang Zhirong1ORCID,Wang Xiangwen1,Yan Chen1

Affiliation:

1. Jiangsu Key Laboratory of Urban and Industrial Safety College of Safety Science and Engineering, Nanjing Tech University Nanjing China

Abstract

AbstractA set of experimental equipment for quenching the deflagration flame in linked vessels with parallel narrow channels was proposed. The quenching effects of the deflagration flame in the linked vessels were investigated, the influence law and mechanism of parallel narrow channels on the deflagration flame was analyzed. The results showed that the Pmax and the (dP/dt)max at each position were both lower than without parallel narrow channels, which indicated that the propagation of flame was inhibited by parallel narrow channels effectively, and the explosion intensity was also reduced. The pressure oscillation phenomenon inside the linked vessels disappeared due to the inclusion of parallel narrow channels. The deflagration flame was successfully quenched when the channel gaps were 0.5, 1.5, and 3 mm, but failed to be quenched when the channel gap was 6 mm. The quenching distance and the average propagation velocity of the deflagration flame in parallel narrow channels increased with the increase of the channel gap. When the channel gap was 6 mm, the deflagration flame completely passed through parallel narrow channels, and the average propagation velocity of deflagration flame was significantly greater than that when the deflagration flame was successfully quenched.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Metals and Alloys,Polymers and Plastics,General Chemistry,Ceramics and Composites,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3