Energy–exergy analysis for performance improvement of Brayton–Rankine combined cycle system by utilizing a solar absorption refrigeration cycle (case study: Kahnuj Combined Cycle Power Plant)

Author:

Esfandiari Moslem1,Pourfayaz Fathollah1ORCID,Kasaeian Alibakhsh1ORCID,Gholami Ali1

Affiliation:

1. Department of Renewable Energies and Environment, Faculty of New Sciences and Technologies University of Tehran Tehran Iran

Abstract

AbstractGas–steam combined cycle power plants are the most efficient electricity‐generation units based on fossil fuels. However, these power plants are prone to efficiency decrease in hot climates as high ambient temperatures adversely influence the gas turbine's output. The present study investigated the effect of incorporating a solar absorption refrigeration (SAR) system into an actual combined cycle power plant for the first time. First, the energy and exergy analyses were performed using THERMOFLOW software. Then, the influence of the ambient temperature (10°C–52.5°C) on the power plant's performance and its components was investigated. The SAR system was then used to cool the compressor's input air and improve the power generation capacity by employing TRNSYS software. The results showed that the power plant reached its maximum efficiency at an ambient temperature of 26.6°C. However, its overall efficiency and net power generation were dropped with a further increase in the ambient temperature. Employing the SAR system for each gas turbine in the power plant on a sunny day until 2 p.m. would decrease the compressor's input air temperature. For example, for the refrigeration capacities of 450, 700, and 1000 tons for each gas turbine, the temperature was reduced by nearly 3°C, 5°C, and 7°C, respectively. Under the same condition, power generation capacity improved by 12.5, 24, and 32.5 MW, and the overall efficiency rose by 0.6%, 1.4%, and 2%. Such an increase in power and efficiency occurred during peak demand, which was significant.

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3