Prediction accuracy improvement of pressure pulsation signals of reversible pump‐turbine: A LSTM and VMD‐based optimization approach

Author:

Fang Mingkun12,Zhang Fangfang12,Cao Zhong3,Tao Ran124ORCID,Xiao Wei5,Zhu Di6,Gui Zhonghua5,Xiao Ruofu12ORCID

Affiliation:

1. College of Water Resources and Civil Engineering China Agricultural University Beijing China

2. Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System China Agricultural University Beijing China

3. Operation Management Department CTG (Hainan) Green Development Investment Co., Ltd Hainan China

4. State Key Laboratory of Water Resources Engineering and Management Wuhan University Wuhan China

5. Pumped Storage Technology and Economy Research Institute State Grid Xinyuan Company Ltd. Beijing China

6. College of Engineering China Agricultural University Beijing China

Abstract

AbstractThe reversible pump‐turbine plays an important role in hydropower stations, but pressure pulsation during their operation affects their performance and lifespan. Accurate prediction of pressure pulsation signals can provide an important basis for energy planning and stable operation of pumped storage units, thereby promoting sustainable development of the environment. This study introduces an optimization method that combines long short‐term memory (LSTM) and variable mode decomposition (VMD) to enhance the prediction accuracy of pressure pulsation signals. First, by decomposing the pressure pulsation signal into multiple relatively stable subsequence components using VMD, the characteristics of the original signal become more distinct. Subsequently, individual LSTM‐based time series prediction models were constructed for each modal function, and the hyperparameters related to subsequence were optimized using the sparrow search algorithm. To validate the efficacy of the proposed approach, this paper conducted experiments using pressure pulsation signals of a pump‐turbine obtained through numerical simulation. The experimental data was divided into training and testing sets, with the former used to train the LSTM model and the latter used for validation. The experimental results show that the optimized VMD with an optimized LSTM method can effectively improve the prediction accuracy of pressure pulsation signals in reversible pump‐turbine.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Energy,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3