Resveratrol alleviates perinatal methylmercury‐induced neurobehavioral impairments by modulating the gut microbiota composition and neurotransmitter disturbances

Author:

Chen Fang1,Zhang Li1,Liu Yi2,Zhang Aihua1,Wang Wenjuan13ORCID

Affiliation:

1. The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health Guizhou Medical University Guiyang China

2. Guiyang Maternal and Child Health Care Hospital Guiyang China

3. Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co‐constructed by the Province and Ministry Guizhou Medical University Guiyang China

Abstract

AbstractMethylmercury (MeHg), a potent neurotoxic substance, causes adverse health outcomes by modulating metabolites through altered gut microbiota patterns. Among the many metabolites, neurotransmitters play a particularly important role in the nervous system and behavior. Resveratrol (RSV) has been investigated as an antiaging, antioxidant, anti‐inflammatory, and neuroprotective agent. The current study evaluated that RSV is protective of neurodevelopmental toxicity induced by MeHg and further explored the underlying mechanisms. Sprague–Dawley rats were treated with 1.2 mg/kg/d of MeHg, and the effects were evaluated after supplementation with RSV (20 mg/kg/d). The results indicated that MeHg had adverse effects on early neurodevelopmental indicators in the experimental group offspring as compared to control pups. Interestingly, RSV significantly improved the MeHg‐induced delays in the neurobehavioral reflexes and reduced the total mercury (THg) concentration in the colons of the offspring rats. In agreement, RSV administration improved the gut microbiota diversity and structure by increasing the abundance of probiotics and upregulating the expression of tight junction proteins. It also ameliorated the MeHg‐induced abnormalities in the expression profiles of neurotransmitters. Furthermore, eight key bacteria that were strongly linked with the neurotransmitters and neuroreflex parameters were identified. Taken together, these results demonstrate that RSV treatment effectively reduces the occurrence of neurodevelopmental toxicity caused by perinatal MeHg exposure by modulating the intestinal flora and neurotransmitter metabolism. These findings provide a new therapeutic approach for treating MeHg‐induced neurotoxicity.The cover image is based on the Research Article Resveratrol alleviates perinatal methylmercury‐induced neurobehavioral impairments by modulating the gut microbiota composition and neurotransmitter disturbances by Fang Chen et al., https://doi.org/10.1002/tox.23973.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Toxicology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3