Rainfall–runoff process and sediment yield in response to different types of terraces and their characteristics: A case study of runoff plots in Zhangjiachong watershed, China

Author:

Meng Xianmeng1ORCID,Zhu Yan1,Shi Ruohui1,Yin Maosheng2,Liu Dengfeng3

Affiliation:

1. School of Environmental Studies China University of Geosciences Wuhan China

2. EIT Institute for Advanced Study Ningbo China

3. School of Water Resources and Hydropower Xi'an University of Technology Xi'an China

Abstract

AbstractA field experiment was conducted in the Zhangjiachong watershed to analyze the characteristics of rainfall–runoff process and sediment yield under different types of terraces. Various runoff plots were utilized, and a two serial tank model was employed to simulate runoff generation and concentration processes, taking into account vegetation interception. A soil erosion model incorporating raindrop erosion and sheet erosion was established to replicate sediment yield and concentration process. The parameters of the rainfall–runoff model and soil erosion model were calibrated and validated using observed runoff and sediment yield data. The controlling factors on runoff and sediment yield were explored and compared. The results indicate that both calibration and validation outcomes were acceptable. The earth‐banked terraces–citrus demonstrated the largest coefficients of upper and lower surface runoff, while its upper runoff threshold of the upper tank and the runoff threshold of the lower tank were the lowest, suggesting that it was more likely to produce surface and subsurface runoff. On the other hand, the stone dike terraces–crops exhibited the smallest coefficients of upper and lower surface runoff, while its upper runoff threshold of the upper tank was the highest. The lower runoff threshold of the upper tank was the same across different types of terraces. Compared to the earth‐banked terraces, the stone dike terraces have a larger infiltration coefficient in the upper tank and a smaller infiltration coefficient in the lower tank. Sensitivity analysis indicates that the most sensitive factors affecting runoff simulation results are the runoff threshold and the infiltration coefficient of the lower tank. Terraces, whether constructed with earth banks or stone dikes, are effective in reducing soil erosion. However, during storm rainfall events, these terraces may be partially destroyed, resulting in a higher sediment yield than that of the same vegetation cover on slope land. Terraces with hedgerows have a more significant effect on reducing runoff and sediment than those without hedgerows.

Funder

National Natural Science Foundation of China

China Scholarship Council

Publisher

Wiley

Subject

Soil Science,General Environmental Science,Development,Environmental Chemistry

Reference51 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3