Do feral pigs increase soil erosion? A monsoonal northern Australia case study

Author:

Hancock Greg R.1ORCID,Lowry John B. C.2

Affiliation:

1. School of Environmental and Life Sciences The University of Newcastle Callaghan Australia

2. Ecosystem Restoration and Landform Program Environmental Research Institute of the Supervising Scientist Darwin Australia

Abstract

AbstractAnimals are recognised biological agents that can turn over large amounts of soil, influence soil structure and composition and may allow soil to more easily erode. Feeding activities of feral pigs (Sus scrofa) are known to produce considerable soil disturbance. Here, pig disturbance, together with soil erosion and deposition patterns, are quantified along two hillslope transects in northern Australia over 10 years. Annual disturbance by pigs was ~1% of surface area. The erosion rate was low with a range of 0.008–0.13 mm year−1. Both transects had similar hillslope profiles, vegetation patterns and similar appearance. There was a greater number of pig disturbances, area and mass of material disturbed by pigs for one transect compared to the other moving downslope. However, for the second transect, the number of disturbances significantly decreased moving downslope while the mass of material exhumed remained relatively constant along the hillslope. For the first transect, this suggests that the greater number of pig digs moving downslope reduces hillslope connectivity and therefore reduces erosion. That is, the greater the amount of disturbance by pigs, the less erosion. The pig digs produce a pit and a mound with the material diffusing locally and the pit capturing material from upslope reducing hillslope connectivity. These pits have been observed to last many years. A control on pig disturbance was likely to be rock content. The average surface rock content of the two transects was significantly different (9% and 20%, respectively) and with the higher rock content reducing pig disturbance and erosion for the second transect. The bio geomorphic influence that pigs represent in the landscape for biogeochemical cycling requires ongoing investigation.

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Earth-Surface Processes,Geography, Planning and Development

Reference65 articles.

1. Modelling the effects of complex topography and patterns of tillage on soil translocation by tillage with mouldboard plough;Alba S.;Journal of Soil and Water Conservation,2001

2. Simulating long-term soil redistribution generated by different patterns of mouldboard ploughing in landscapes of complex topography

3. Soil landscape evolution due to soil redistribution by tillage: a new conceptual model of soil catena evolution in agricultural landscapes

4. Effect of feral pigs (Sus scrofa) on subalpine vegetation at smokers gap, ACT;Alexiou P.N.;Proceedings of the Ecological Society of Australia,1983

5. A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Water Erosion and Mass Movements;Landscapes of the Anthropocene with Google Earth;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3