Phaseolus vulgaris STP13.1 is an H+‐coupled monosaccharide transporter, present in source leaves and seed coats, with higher substrate affinity at depolarized potentials

Author:

Pegler Joseph L.1ORCID,Patrick John W.1ORCID,McDermott Benjamin1ORCID,Brown Anthony1,Oultram Jackson M. J.1,Grof Christopher P. L.1,Ward John M.2

Affiliation:

1. Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and Environment University of Newcastle Callaghan New South Wales Australia

2. Plant and Microbial Biology University of Minnesota Twin Cities St. Paul Minnesota USA

Abstract

AbstractSugar transport proteins (STPs) are high‐affinity H+‐coupled hexose symporters. Recently, the contribution of STP13 to bacterial and fungal pathogen resistance across multiple plant species has garnered significant interest. Quantitative PCR analysis of source leaves, developing embryos, and seed coats of Phaseolus vulgaris L. (common bean) revealed that PvSTP13.1 was expressed in source leaves and seed coats throughout seed development. In contrast, PvSTP13.1 transcripts were detected at exceedingly low levels in developing embryos. To characterize the transport mechanism, PvSTP13.1 was expressed in Xenopus laevis oocytes, and inward‐directed currents were analyzed using two‐electrode voltage clamping. PvSTP13.1 was shown to function as an H+‐coupled monosaccharide symporter exhibiting a unique high affinity for hexoses and aldopentoses at depolarized membrane potentials. Specifically, of the 31 assessed substrates, which included aldohexoses, deoxyhexoses, fructose, 3‐O‐methyl‐D‐glucose, aldopentoses, polyols, glycosides, disaccharides, trisaccharides, and glucuronic acid, PvSTP13.1 displayed the highest affinity (K0.5) for glucose (43 μM), mannose (92 μM), galactose (145 μM), fructose (224 μM), xylose (1.0 mM), and fucose (3.7 mM) at pH 5.6 at a depolarized membrane potential of −40 mV. The results presented here suggest PvSTP13.1 contributes to retrieval of hexoses from the apoplasmic space in source leaves and coats of developing seeds.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3