The use of a multicellular in vitro model to investigate uptake and migration of bacterial extracellular vesicles derived from the human gut commensal Bacteroides thetaiotaomicron

Author:

Modasia Amisha A.1ORCID,Jones Emily J.1,Martel L. Marie‐Pascale2,Louvel Hélène2,Couraud Pierre‐Olivier2,Blackshaw L. Ashley1,Carding Simon R.13

Affiliation:

1. Quadram Institute Bioscience Rosalind Franklin Road Norwich Research Park Norwich UK

2. National Institute of Health and Medical Research (INSERM) 6 Place Tristan Bernard Paris France

3. Norwich Medical School Norwich Research Park University of East Anglia Norwich UK

Abstract

AbstractBacterial extracellular vesicles (BEVs) are increasingly seen as key signalling mediators between the gut microbiota and the host. Recent studies have provided evidence of BEVs ability to transmigrate across cellular barriers to elicit responses in other tissues, such as the central nervous system (CNS). Here we use a combination of single‐, two‐ and three‐cell culture systems to demonstrate the transmigration of Bacteroides thetaiotaomicron derived BEVs (Bt‐BEVs) across gut epithelium and blood brain barrier (BBB) endothelium, and their subsequent acquisition and downstream effects in neuronal cells. Bt‐BEVs were shown to traffic to the CNS in vivo after intravenous administration to mice, and in multi‐cell in vitro culture systems to transmigrate across gut epithelial and BBB endothelial cell barriers, where they were acquired by both microglia and immature neuronal cells. No significant activation/inflammatory effects were induced in non‐differentiated neurons, in contrast to that observed in microglia cells, although this was notably less than that induced by lipopolysaccharide (LPS). Overall, our findings provide evidence for transmigration of Bt‐BEVs across gut‐epithelial and BBB endothelial cell barriers in vivo and in vitro, and their downstream responses in neural cells. This study sheds light onto how commensal bacteria‐derived BEV transport across the gut‐brain axis and can be exploited for the development of targeted drug delivery.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Wiley

Reference50 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3