Affiliation:
1. Key Laboratory of Marine Materials and Related Technologies Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo China
2. School of Chemical Sciences University of Chinese Academy of Sciences Beijing China
3. Institute of Quantitative Biology College of Life Sciences Zhejiang University Hangzhou China
4. Department of Chemistry National University of Singapore Singapore Singapore
Abstract
AbstractUltralong organic room temperature phosphorescence (RTP) is attracting increasing attention due to its fascinating optical phenomena and wide applications. Among various RTP, excimer phosphorescence is of fundamental significance, but it remains a considerable challenge to achieve flexible, multicolor and large‐area excimer RTP materials, which should greatly advance the understanding and development of organic light‐emitting devices. Herein, we present ultralong excimer RTP films by the self‐assembly and confinement of terpyridine (Tpy) derivatives in polymeric matrices. Strikingly, the self‐assembly of Tpy derivatives induces the formation of excimer complexes, thus immensely minimizing singlet‐triplet splitting energy (ΔEST) to promote the intersystem crossing process. Furthermore, the confinement by multiple hydrogen bonding interactions as well as the compact aggregation of phosphors jointly suppresses the nonradiative transitions, leading to long‐lived excimer RTP (τ = 543.9 ms, 19,000‐fold improvements over the powder). On account of the outstanding afterglow performance and color‐tunability of RTP materials, flexible and large‐area films were fabricated for intelligent display, anticounterfeiting, and time‐resolved information encryption.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Natural Science Foundation of Ningbo
Subject
General Medicine,General Chemistry
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献