Affiliation:
1. School of Information Resource Management Renmin University of China Beijing China
2. Faculty of Humanities and Social Sciences Beijing University of Technology Beijing China
Abstract
AbstractNowadays, the omnipresence of the Internet has fostered a subculture that congregates around the contemporary milieu. The subculture artfully articulates the intricacies of human feelings by ardently pursuing the allure of novelty, a fact that cannot be disregarded in the sentiment analysis. This paper aims to enrich data through the lens of subculture, to address the insufficient training data faced by sentiment analysis. To this end, a new approach of subculture‐based data augmentation (SCDA) is proposed, which engenders enhanced texts for each training text by leveraging the creation of specific subcultural expression generators. The extensive experiments attest to the effectiveness and potential of SCDA. The results also shed light on the phenomenon that disparate subcultural expressions elicit varying degrees of sentiment stimulation. Moreover, an intriguing conjecture arises, suggesting the linear reversibility of certain subcultural expressions.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献