How omics is revealing new roles for glia in addiction

Author:

Bergkamp David J.12ORCID,Neumaier John F.123ORCID

Affiliation:

1. Department of Pharmacology University of Washington Seattle Washington USA

2. VISN 20 Mental Illness Research, Education and Clinical Center VA Puget Sound Health Care System Seattle Washington USA

3. Department of Psychiatry & Behavioral Sciences University of Washington Seattle Washington USA

Abstract

AbstractExperiments to study the biology of addiction have historically focused on the mechanisms through which drugs of abuse drive changes in the functioning of neurons and neural circuits. Glia have often been ignored in these studies, however, and this has left many questions in the field unanswered, particularly, surrounding how glia contribute to changes in synaptic plasticity, regulation of neuroinflammation, and functioning of neural ensembles given massive changes in signaling across the CNS. Omics methods (transcriptomics, translatomics, epigenomics, proteomics, metabolomics, and others) have expanded researchers' abilities to generate hypotheses and carry out mechanistic studies of glial cells during acquisition of drug taking, intoxication, withdrawal, and relapse to drug seeking. Here, we present a survey of how omics technological advances are revising our understanding of astrocytes, microglia, oligodendrocytes, and ependymal cells in addiction biology.

Funder

National Institute on Drug Abuse

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3