Fractional order capacitance behavior due to hysteresis effect of ferroelectric material on GaN HEMT devices

Author:

Pyngrope Dariskhem1,Majumdar Shubhankar1ORCID,Crupi Giovanni2ORCID

Affiliation:

1. Department of Electronics and Communication Engineering National Institute of Technology Meghalaya Shillong Meghalaya India

2. BIOMORF Department University of Messina Messina Italy

Abstract

AbstractIn recent years, gallium nitride (GaN) high electron mobility transistors (HEMTs) have come to the forefront of the semiconductor industry because of their exceptional performance in both high‐power and high‐frequency utility. Accurate capacitance modeling is crucial to optimize performance and facilitate energy‐efficient electronic circuit design. In order to reflect the complex nature of the aluminum scandium nitride (AlScN) gate capacitance in GaN HEMTs this study investigates the use of the unique Grünwald‐Letnikov model based on fractional order calculus. The proposed model presents a powerful approach to accurately characterize capacitance since fractional order derivatives allow modeling of non‐integer order systems. Quantitative assessment of the Grünwald‐Letnikov model's accuracy is performed through various error metrics, including mean absolute error (MAE), root mean square error (RMSE), maximum percentage error (MPE), mean absolute percentage error (MAPE), and mean squared error (MSE), by comparing the model's predictions to experimental data. Notably, this model demonstrates remarkable consistency in error metrics, with maximum values of MPE = 0.21%, MAE = 0.05%, MAPE = 0.33%, MSE = 0.01%, and RMSE = 0.09% for the forward scan, and MPE = 0.32%, MAE = 0.04%, MAPE = 0.39%, MSE = 0.01%, and RMSE = 0.08% for the backward scan. These metrics affirm the model's precision in capturing the nuanced capacitance characteristics of GaN HEMT devices. Hence, herein for the first time, the novel Grünwald‐Letnikov model, augmented by fractional order calculus, proves to be a robust tool for accurately characterizing GaN HEMT capacitance. Its ability to seamlessly account for the complexities introduced by using ferroelectric material highlights its potential for advancing semiconductor design and optimizing device performance.

Publisher

Wiley

Subject

Electrical and Electronic Engineering,Computer Science Applications,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3