Affiliation:
1. School of Materials Science and Engineering, Guangxi Key Laboratory of Optical and Electronic Materials and Devices Guilin University of Technology Guilin 541004 China
2. Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources Guilin University of Technology Guilin 541004 China
Abstract
AbstractHeat dissipation of electronic devices was an urgent problem to be addressed. In this paper, magnesium borate whiskers were used as the template for the preparation of the boron nitride submicron tube (BNST). Then the polymer‐free supported three‐dimensional boron nitride submicron tube skeleton was prepared by sacrificing the material ammonia bicarbonate. Finally, high thermal conductivity boron nitride submicron tube/epoxy resin (BNST/EP) composites were prepared by infiltrating technique. The phase, chemical composition, microstructure, thermal conductivity, and thermal stability of the samples were studied by X‐ray diffraction, scanning electron microscopy, and other characterization methods. The results show that BNST has an average diameter was 2 um and the tube length was 5–20 um. The surface of BNST was loaded with a large number of boron nitride nanosheets. The in‐plane thermal conductivity of the BNST/EP composite was improved by the three‐dimensional BNST skeleton. When the BNST was 39.28 wt%, the in‐plane thermal conductivity reached 1.632 W/(m K). Compared with pure EP, the in‐plane thermal conductivity was increased by 782.2%. BNST played a good physical barrier effect on the matrix, so the thermal stability of the composite was greatly improved. This strategy will open up a new path to prepare heat dissipation materials.
Funder
Special Fund for Distinguished Experts in Guangxi of China
National Natural Science Foundation of China
Subject
Materials Chemistry,Polymers and Plastics,General Chemistry,Ceramics and Composites
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献