A novel cat swarm optimization‐based fuzzy PI controller for improving dynamic response of converter

Author:

Priya Kanjikovil Marimuthu1ORCID,Balakumaran Thangaraju1

Affiliation:

1. Department of Electronics and Communication Engineering Coimbatore Institute of Technology Coimbatore Tamil Nadu India

Abstract

AbstractNowadays, the use of fuel cells in various applications has become very widespread. Some of their most important applications are in electric vehicles (EVs) and local off‐grid power systems. An EV works as an electric motor that burns a mixture of fuel and gases to generate electricity. One of the challenges with fuel cells is the slow dynamic response to load power changes. In the past few decades, the modeling and control of DC‐DC converters have undergone extensive research and development. However, the error, settling time, and peak overshoot performance are not reduced by the robust nonlinear controller and current mode controller. To overcome these problems, quantile regressive extreme seeking cat swarm optimized Mamdani fuzzy PI controller (QRESCSO‐MFPIC) approach is developed. The goal of the QRESCSO‐MFPIC approach is to reduce the integral time absolute error (ITAE) for tuning the fuzzy PI controller. Initializing the fuzzy PI controller parameter is an input in the QRESCSO‐MFPIC approach. For every parameter value, the fitness function is determined and quantile regression analysis is carried out. The efficiency of the QRESCSO‐MFPIC approach is measured by evaluating the settling time and peak overshoot. Tuning of the PI controller is carried out with cat swarm optimization (CSO) and particle swarm optimization (PSO) based on the objective function of ITAE. The result analysis shows that the QRESCSO‐MFPIC approach improves the efficiency of an optimized Fuzzy PI controller compared to the existing methods. Peak overshoot reduction and settling time are improved through the QRESCSO‐MFPIC approach than the proportional integral particle swarm optimization controller (PI‐PSO).

Publisher

Wiley

Subject

Waste Management and Disposal,Renewable Energy, Sustainability and the Environment,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3