High throughput generating stable spheroids with tip‐refill wafer

Author:

Yang Xiaoyan1,Pan Rong1,Ning Ke1,Xie Yuanyuan1,Chen Feng1,Sun Wei2,Yu Ling1ORCID

Affiliation:

1. Key Laboratory of Luminescence Analysis and Molecular Sensing Ministry of Education Institute for Clean Energy and Advanced Materials School of Materials and Energy Southwest University Chongqing China

2. College of Chemistry and Chemical Engineering Hainan Normal University Haikou China

Abstract

AbstractThree‐dimensional (3D) cell cultures have garnered significant attention in biomedical research due to their ability to mimic the in vivo cellular environment more accurately. The formation of 3D cell spheroids using hanging drops has emerged as a cost‐effective and crucial method for generating uniformly‐sized spheroids. This study aimed to validate the potential of a tip‐refill wafer (TrW), a disposable laboratory item used to hold pipette tips, in facilitating 3D cell culture. The TrW allows for easy generation of hanging drops by pipetting the solution into the holes of the wafer. The mechanical stability of the hanging drops is ensured by the surface wettability and thickness of the TrW. Hanging drops containing 60‐µL of solution remained securely attached to the TrW even when subjected to orbital shaking at 210 rpm. The exceptional resistance to mechanical shaking enabled the use of inertial focusing to facilitate spheroid formation. This was demonstrated through live/dead cell staining, quantitative polymerase chain reaction (qPCR) analysis, and cytoskeleton staining, which revealed that horizontal orbiting at 60 rpm for 15 min promoted cell aggregation and ultimately led to the formation of 3D spheroids. The spheroid harvest rate is 96.1% ± 3.5% across three TrWs, each containing 60 hanging drops. In addition to generating mono‐culture 3D spheroids, the TrW‐based hanging drop platform also enables the formation of multicellular spheroids, and on‐demand pairing and fusion of spheroids. The TrW is a disposable item that does not require any fabrication or surface modification procedures, further enhancing its application potential in conventional biological laboratories.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3