Affiliation:
1. Food Biochemistry Laboratory Department of Applied Biological Chemistry Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
2. Department of Gastroenterological and Transplant Surgery Graduate School of Biomedical and Health Science Hiroshima University Hiroshima Japan
3. Nutri‐Life Science Laboratory Department of Applied Biological Chemistry Graduate School of Agricultural and Life Sciences The University of Tokyo Tokyo Japan
4. Mucosal Immunology and Allergy Therapeutics Institute for Global Prominent Research, Future Medicine Education and Research Organization Chiba University Chiba Japan
Abstract
AbstractHuman liver organoids (HLOs) are reliable tools to represent physiological human liver biology. However, their use is limited especially in basic sciences. One of the reasons for this would be the insufficient systematic methodology to handle HLOs, including culture system, functional assessment, and gene transduction. Here, we generated and characterized mouse L cells stably and simultaneously overexpressing R‐spondin1, hepatocyte growth factor, fibroblast growth factor (FGF) 7, and FGF10 via lentiviral transduction. The conditioned medium of the cells contributed to HLO growth as a replacement of commercially available recombinant proteins, which leads to a significant reduction of their culture cost. Proliferative and maturation phases of the cells were controlled by switching the medium to facilitate the evaluation of hepatocyte function, including insulin responsiveness and intracellular lipid accumulation. Gene expression analysis revealed that HLOs highly expressed genes involved in lipid metabolism. Importantly, HLOs secreted physiologically matured very low‐density lipoprotein, which is rarely observed in mice and in established cell lines. Efficient gene transduction into HLOs was achieved via a transient 2‐dimensional culture during viral infection. This study provides an invaluable platform for utilizing HLOs in various research fields, such as molecular biology, pharmacology, toxicology, and regenerative medicine.
Funder
Japan Society for Bioscience, Biotechnology, and Agrochemistry
Subject
Molecular Medicine,Applied Microbiology and Biotechnology,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献